Polycrystalline Cu2O photovoltaic devices incorporating Zn(O,S) window layers

نویسندگان

  • Yulia Tolstova
  • Stefan T. Omelchenko
  • Raymond E. Blackwell
  • Amanda M. Shing
  • Harry A. Atwater
چکیده

The tunability of the Zn(O,S) conduction band edge makes it an ideal, earth-abundant heterojunction partner for Cu2O, whose low electron affinity has limited photovoltaic performance with most other heterojunction candidates. However, to date Cu2O/Zn(O,S) solar cells have exhibited photocurrents well below the entitled short-circuit current in the detailed balance limit. In this work, we examine the sources of photocurrent loss in Cu2O/Zn(O,S) solar cells fabricated by sputter deposition of Zn(O,S) on polycrystalline Cu2O substrates grown by thermal oxidation of Cu foils. X-ray photoelectron spectra reveal that Zn(O,S) deposited at room temperature leads to a thin layer of ZnSO4 at the Zn(O,S)/Cu2O interface that impedes current collection and limits the short circuit current density to 2 mA/cm. Deposition of Zn(O,S) at elevated temperatures decreases the presence of interfacial ZnSO4 and therefore the barrier to photocurrent collection. Optimal photovoltaic performance is achieved at a Zn(O,S) deposition temperature of 100 °C, which enables an increase in the short circuit current density to 5 mA/cm, although a small ZnSO4 layer is still present. Deposition at temperatures above 100 °C leads to a reduction in photovoltaic performance. Spectral response measurements indicate the presence of a barrier to photocurrent and exhibit a strong dependence on voltage and light bias, likely due to the photodoping

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microstructures and Photovoltaic Properties of Zn(Al)O/Cu2O-Based Solar Cells Prepared by Spin-Coating and Electrodeposition

Copper oxide (Cu2O)-based heterojunction solar cells were fabricated by spin-coating and electrodeposition methods, and photovoltaic properties and microstructures were investigated. Zinc oxide (ZnO) and Cu2O were used as nand p-type semiconductors, respectively, to fabricate photovoltaic devices based on In-doped tin oxide/ZnO/Cu2O/Au heterojunction structures. Short-circuit current and fill f...

متن کامل

Engineering Schottky Contacts in Open-Air Fabricated Heterojunction Solar Cells to Enable High Performance and Ohmic Charge Transport

The efficiencies of open-air processed Cu2O/Zn(1-x)Mg(x)O heterojunction solar cells are doubled by reducing the effect of the Schottky barrier between Zn(1-x)Mg(x)O and the indium tin oxide (ITO) top contact. By depositing Zn(1-x)Mg(x)O with a long band-tail, charge flows through the Zn(1-x)Mg(x)O/ITO Schottky barrier without rectification by hopping between the sub-bandgap states. High curren...

متن کامل

Interface stoichiometry control to improve device voltage and modify band alignment in ZnO/Cu2O heterojunction solar cells

Broader context Cuprous oxide (Cu2O) is a candidate material for photovoltaic and photoelectrochemical device applications due to its suitable band gap and low processing cost. Furthermore, due to the natural abundance of its component elements in the atmosphere and crust, it is a candidate for terawatt scale solar energy production. Given the electronic band gap of Cu2O is 2.1 eV, the detailed...

متن کامل

EPJ Photovoltaics Zn ( O , S ) layers for chalcoyprite solar cells sputtered from a single target

A simplified Cu(In,Ga)(S, Se)2/Zn(O, S)/ZnO:Al stack for chalcopyrite thin-film solar cells is proposed. In this stack the Zn(O, S) layer combines the roles of the traditional CdS buffer and undoped ZnO layers. It will be shown that Zn(O, S) films can be sputtered in argon atmosphere from a single mixed target without substrate heating. The photovoltaic performance of the simplified stack match...

متن کامل

Inorganic Solar Cells Based on Electrospun ZnO Nanofibrous Networks and Electrodeposited Cu2O

The nanostructured ZnO/copper oxide (Cu2O) photovoltaic devices based on electrospun ZnO nanofibrous network and electrodeposited Cu2O layer have been fabricated. The effects of the pH value of electrodeposition solution and the Cu2O layer thickness on the photovoltaic performances have been investigated. It is revealed that the pH value influences the morphology and structure of the Cu2O layer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016